Computation
Intractability II



Review: Mystery Problems

Huge class of natural and interesting problems for which
@ we dont know any polynomial time algorithm

@ we cant prove that none exists

Examples: Steiner Tree, Knapsack, Traveling Salesman,
Vertex Cover, Independent Seft, Facility Design, efc.



NP-completeness

| NP-complete: class of problems
NP- let: \
= . that are “as hard” as every other

problem in NP

A polynomial-time algorithm for any NP-complete
problem implies one for every problem in NP

Today: explore NP-completeness and its implications



P 1= NP?

Two possibilities (we dont know which is true, but
we think P != NP)

EXP' NP-complete '

$1M prize if you can figure out the answer
(one of Clay institutes seven Millennium Problems)

EXP







Polynomial-Time Reduction

@Y <p X = can solve Y in polynomial-time using polynomial-
time algorithm for X as a black box (if one exists!)

® Statement about relative hardness:

aIfY <, Xand X e P, thenY € P

aIfY <, Xand¥Y ¢ P, then X ¢ P



Basic Reduction Strategies

@ Reduction by simple equivalence.
@ Reduction from special case to general case.

@ Reduction by encoding with gadgets.



Set Cover

SET COVER: Given a set U of elements, a collection S;,
Sy ..., Sy of subsets of U, and an integer Kk, does there exist
a collection of < k of these sets whose union is equal fo U?

Example. U=4{A, G H, P, SH}
Sl = {A, H} S4 = {P}
S2 = {G, SH} S5 = {G, H, SH}
S3 = {A, H, SH}
K=3 — ves

K=2 — no



Vertex Cover

VERTEX COVER: Given a graph G = (V, E) and an integer Kk,
is there a subset of vertices S c V such that |S| < k, and for
each edge, at least one of its endpoints is in S?




Basic Reduction Strategies

@ Reduction by simple equivalence.
@ Reduction from special case to general case.

@ Reduction by encoding with gadgefts.



Satisfiabi l|'|'y Important!

@ Term: A Boolean variable or its negation.
OR

@ Clause:A disjunction (Yor”) of terms.

@ Formula ®: A conjunction (“and”) of clauses

@ SAT: Given a formula, is there a truth assignment that satisfies all
clauses? (i.e. all clauses evaluate to “true”).
Example on board.

@ 3-SAT: special case where each clause has exactly 3 terms



3-SAT Is Reducible fo
Independent Set

@ Claim. 3-SAT <, INDEPENDENT-SET.

@ Proof. Given an instance ® of 3-SAT, we construct an instance (G, k)
of INDEPENDENT-SET that has an independent set of size k iff @ is
satisfiable.

Do reduction on board



Reductions, Pictorially

3-SAT

l

INDEPENDENT
SET

I

VERTEX COVER

|

SET COVER

Y — X meansY <, X

Partial map of problems we can use to
solve other ones in polynomial time by
transitivity of reductions:

IfY<poXand X<, W, thenY <, W.

Proof idea: Compose the two algorithms.



Toward an (Informal)
Definition of NP

Exp .

What is special about the mystery problems?




First: Let's Just Focus on
Decision Problems, OK?

@ Decision problem. Does there exist a vertex cover of size < k?
@ Search problem. Find vertex cover of minimum size.

@ Self-reducibility. Search problem < , decision version.

@ Applies to all (NP-complete) problems in this chapter.
@ Justifies our focus on decision problems.



P and NP

@ P. Decision problems for which there is a polynomial
time algorithm

@ NP. Decision problems for which there is a polynomial
time certifier

@ Lets see some examples...



Solving vs. Certifying

@ E.g., Independent Set

@ Solve => Find an independent set of size k for a graph G
S = FindIndeptSet (G, k)

@ Certify => Check whether S is an independent set of size k
isIndept = CertifyIndeptSet (G, k, S)




Example: Non-Prime

@ COMPOSITES. Given an integer s, is s non-prime?

@ Solution or “certificate”. A nontrivial factor t of s. Note that
such a certificate exists iff s is non-prime.

@ Instance:

@ Certifier(s, t): s = 437,669.
Return "true”if 1 < t+ < s, and

@ Certificate:
s/t is an integer g e

t = 541 or 8009.



Example: 3-SAT

@ 3-SAT. Given formula @, is there a satisfying assignment?
(X1 VX2V X3)AMX VX2V Xx3)AMXYV X2V xi) AKX VX3V Xs)

@ Certificate. An assignment of truth values to the n boolean
variables.

X1 = true, X2 = true, x3 = false, x4 = true

@ Certifier. check that each clause in @ has at least one true
literal.



Example: Hamiltonian Cycle

®HAM-CYCLE. Given an undirected graph G = (V, E), does
there exist a simple cycle C that visits every node?

@ Certificate. A permutation of the n nodes.

certificate t

instance s



Takeaway

EXP

o

@ INDEPENDENT-SET, NON-PRIME, 3-SAT, and
HAMILTONIAN-CYCLE are in NP

@ So are many more problems...



P, NP

d@Claim. P < NP

aIf we can solve the problem in polynomial time, we can
always certify a solution in polynomial time. (Easy to prove
formally given a slightly more formal definition of NP)



NP-Complete

EXP NP-complete

® NP-complete. A problem Y in NP with the property that for
every problem X in NP, X < Sl

@ WHAT?!



NP-Completeness

All of NP (note: this includes P too!)

Cook-Levin Theorem. In 1971, Cook and Levin independently
showed that particular problems were NP-Complete.

We'll look at CIRCUIT-SAT as canonical NP-Complete problem



NP-Completeness

Given a canonical NP-complete problem, others
follow by polynomial-time reductions.

by Cook-Levin Theorem
> T | i




NP-Complete = Intractable
(Probably)

@ If there is a polynomial-time algorithm for any NP-
complete problem, then P = NP. (We dont think this
is true)



What To Know

How to prove problem Z is NP-complefte:

(1) Show that Z is in NP
(2) Find an NP-complete problem Y and show that Y <, Z

n

— ¥ — Z

/%

If P != NP, there is no polynomial-time algorithm for Z



Overview of
Cook-Levin Theorem



Circuit Satisfiability

@ CIRCUIT-SAT. Given a combinational circuit built out
of AND, OR, and NOT gates, is there a way to set the
circuit inputs so that the output is 17?

output

| 0 ? ? ?
hard-coded inpufts inputs

yes: 101



CIRCUIT-SAT is NP-Complefte

@ Theorem. CIRCUIT-SAT is NP-complete.
@Proof idea: encode certifier algorithm as circuit

For any problem in NP, the certifier C(s, t) is a
polynomial-time algorithm that outputs yes/no.

Encode C(s, 1) as a circuit of polynomial size that hard-
codes the problem s, and is satisfiable iff there is a

certificate t causes C(s, t) to output “yes”.

The circuit can "guess” the certificate.



Example:
Independent Set

@ Independent Set: Input s = (G, k). Is there an
independent set S of size at least k?

@ Certificate: t C V (the candidate independent set)

@ Certifier: C(s, 1): check if t is an independent set
of size at least k



Example

Circuit that outputs true iff graph G has an
independent set of size 2.

independent set? Q independent set of size >= 2?

both endpoints of some
edge have been chosen? o
o set of size >= 2?
N\ A\ N\ 0

iy &

G ={(V, EJii=n @ @ @ Q o 0
? ? 2

1 0] 1

hard-coded inputs n inputs (nodes in
(graph description) independent set)



Some NP-Complete Problems

@ Thousands of known NP-Complete problems. Genres:

@ Packing: SET-PACKING, INDEPENDENT SET.
@Covering: SET-COVER, VERTEX-COVER.

@ Constraint satisfaction: SAT, 3-SAT.

@ Sequencing: HAMILTONIAN-CYCLE, TSP.
@Partitioning: 3D-MATCHING 3-COLOR.
@Numerical: SUBSET-SUM, KNAPSACK.

@ In practice. Most NP problems are either known to be in P
or NP-complete.

@Notable exceptions. Factoring, graph isomorphism



Impact of NP-Completeness

@Prime intellectual export of CS to other disciplines

@ You should know about this if you are a chemist, physicist,
mathematician....
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MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

{ CHOTCHKIES RESTAURAWT

«— APPENZERS —~
MIXED FRUIT 2.15
FRENCH FRIES 2.75
SIDE 5ALAD 3.35
HOT WINGS 3.55
MOZZAREUA STICKS  H.20
SAMPLER PLATE 5.80

WED LIKE EXACTLY $15. 05
WORTH OF APPETIZERS, PLEASE.

l . EXACTLY?  UHA..

HERE, THESE PAPERS ON THE KNAPSACK
PROBLEM MIGHT HELP YOU OUT.

LISTEN, I HAVE Six OTHER
TABLES TO GET TO —

—AS FRST AS POSSIBLE, (F COURSE. WANT
SOMETHING ON TRAVELING SALESNAN? /

\
(YIER




