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Review: Mystery Problems

Huge class of natural and interesting problems for which
we don’t know any polynomial time algorithm
we can’t prove that none exists 

Examples: Steiner Tree, Knapsack, Traveling Salesman, 
Vertex Cover, Independent Set, Facility Design, etc.



NP-completeness
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NP-complete
NP-complete: class of problems 

that are “as hard” as every other 
problem in NP

A polynomial-time algorithm for any NP-complete 
problem implies one for every problem in NP

Today: explore NP-completeness and its implications



P != NP?
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P = NP

Two possibilities (we don’t know which is true, but 
we think P != NP)

$1M prize if you can figure out the answer
(one of Clay institute’s seven Millennium Problems)

NP-complete



Plan

Polynomial Time Reductions

Define NP

Explore NP-completeness



Polynomial-Time Reduction

Y ≤ P X → can solve Y in polynomial-time using polynomial-
time algorithm for X as a black box (if one exists!)

Statement about relative hardness:

If Y ≤ P X and X ∈ P, then Y ∈ P

If Y ≤ P X and Y ∉ P, then X ∉ P



Basic Reduction Strategies

Reduction by simple equivalence.

Reduction from special case to general case.

Reduction by encoding with gadgets.



Set Cover
SET COVER:  Given a set U of elements, a collection S1, 
S2, . . . , Sm of subsets of U, and an integer k, does there exist 
a collection of ≤ k of these sets whose union is equal to U?

S1 = {A, H}
S2 = {G, SH}

S3 = {A, H, SH}

S4 = {P}
S5 = {G, H, SH}

U = {A, G, H, P, SH}

k = 3 → yes
k = 2 → no

Example.



Vertex Cover
VERTEX COVER:  Given a graph G = (V, E) and an integer k, 
is there a subset of vertices S ⊆ V such that |S| ≤ k, and for 
each edge, at least one of its endpoints is in S?



Basic Reduction Strategies

Reduction by simple equivalence.

Reduction from special case to general case.

Reduction by encoding with gadgets.



Term:! A Boolean variable or its negation.
    xi OR x͞i

Clause:!A disjunction (“or”) of terms.
    Cj = x1 ⋁ x2 ⋁ x3

Formula Φ: A conjunction (“and”) of clauses
    C1 ⋀ C2 ⋀ C3 ⋀ C4

SAT: Given a formula, is there a truth assignment that satisfies all 
clauses? (i.e. all clauses evaluate to “true”). 
Example on board.

3-SAT: special case where each clause has exactly 3 terms

Satisfiability Important!



3-SAT is Reducible to 
Independent Set

Claim.  3-SAT ≤P INDEPENDENT-SET.

Proof.  Given an instance Φ of 3-SAT, we construct an instance (G, k) 
of INDEPENDENT-SET that has an independent set of size k iff Φ is 
satisfiable.

Do reduction on board



3-SAT

INDEPENDENT 
SET

VERTEX COVER

Reductions, Pictorially

SET COVER

Y X means Y ≤ P X

Partial map of problems we can use to 
solve other ones in polynomial time by 
transitivity of reductions:

If Y ≤ P X and X ≤ P W, then Y ≤ P W.

Proof idea: Compose the two algorithms.



Toward an (Informal) 
Definition of NP
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What is special about the mystery problems?



First: Let’s Just Focus on 
Decision Problems, OK?

Decision problem. Does there exist a vertex cover of size ≤  k?

Search problem. Find vertex cover of minimum size.

Self-reducibility. Search problem ≤ P decision version.
Applies to all (NP-complete) problems in this chapter.
Justifies our focus on decision problems.



P and NP

P.  Decision problems for which there is a polynomial 
time algorithm

NP.  Decision problems for which there is a polynomial 
time certifier

Let’s see some examples...



Solving vs. Certifying
E.g., Independent Set

Solve => Find an independent set of size k for a graph G
           S = FindIndeptSet (G, k)

Certify => Check whether S is an independent set of size k
       isIndept = CertifyIndeptSet (G, k, S)

No known polynomial time solution to solve independent set
Easy to certify a solution in polynomial time



Example: Non-Prime
COMPOSITES.  Given an integer s, is s non-prime?

Solution or “certificate”. A nontrivial factor t of s.  Note that 
such a certificate exists iff s is non-prime.

Certifier(s, t): 
Return “true” if 1 ≤ t ≤ s, and 
s/t is an integer

Instance:
s = 437,669.

Certificate:
 t = 541 or 809.



Example: 3-SAT

3-SAT. Given formula Φ, is there a satisfying assignment?

(x1 ⋁ x2 ⋁ x3) ⋀ (x1 ⋁ x2 ⋁ x3) ⋀ (x1 ⋁ x2 ⋁ x4) ⋀ (x1 ⋁ x3 ⋁ x4)

Certificate.  An assignment of truth values to the n boolean 
variables.

x1 = true, x2 = true, x3 = false, x4 = true

Certifier. check that each clause in Φ has at least one true 
literal.



Example: Hamiltonian Cycle

HAM-CYCLE.  Given an undirected graph G = (V, E), does 
there exist a simple cycle C that visits every node?

Certificate.  A permutation of the n nodes.

instance s
certificate t



Takeaway

INDEPENDENT-SET, NON-PRIME, 3-SAT, and 
HAMILTONIAN-CYCLE are in NP

So are many more problems... 
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P, NP

Claim.  P  ⊆  NP.

If we can solve the problem in polynomial time, we can 
always certify a solution in polynomial time. (Easy to prove 
formally given a slightly more formal definition of NP)



NP-Complete

NP-complete.  A problem Y in NP with the property that for 
every problem X in NP, X ≤ p Y.

WHAT?!
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NP-complete



NP-Completeness
CIRCUIT-SAT

VERTEX-
COVER

INDEPT-
SET

SET-
COVER

TRAVELING-
SALEMAN3-SAT …

Cook-Levin Theorem. In 1971, Cook and Levin independently 
showed that particular problems were NP-Complete. 

We’ll look at CIRCUIT-SAT as canonical NP-Complete problem

All of NP (note: this includes P too!)



Given a canonical NP-complete problem, others 
follow by polynomial-time reductions.

NP-Completeness

CIRCUIT-SAT

3-SAT

DIR-HAM-
CYCLE

INDEPENDENT 
SET

VERTEX COVER

GRAPH 3-
COLOR

HAM-CYCLE

TSP

SUBSET-
SUM

SCHEDULINGPLANAR 3-
COLOR

by Cook-Levin Theorem

SET COVER



NP-Complete = Intractable
(Probably)

If there is a polynomial-time algorithm for any NP-
complete problem, then P = NP. (We don’t think this 
is true)
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P = NP
NP-complete



What To Know

If P != NP, there is no polynomial-time algorithm for Z

Y Z

  

  

  

How to prove problem Z is NP-complete:
(1) Show that Z is in NP
(2) Find an NP-complete problem Y and show that Y ≤ P Z



Overview of 
Cook-Levin Theorem
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Circuit Satisfiability
CIRCUIT-SAT.  Given a combinational circuit built out 
of AND, OR, and NOT gates, is there a way to set the 
circuit inputs so that the output is 1?



CIRCUIT-SAT is NP-Complete
Theorem. CIRCUIT-SAT is NP-complete. 

Proof idea: encode certifier algorithm as circuit

For any problem in NP, the certifier C(s, t) is a 
polynomial-time algorithm that outputs yes/no. 

Encode C(s, t) as a circuit of polynomial size that hard-
codes the problem s, and is satisfiable iff there is a 
certificate t causes C(s, t) to output “yes”.

The circuit can “guess” the certificate.



Example: 
Independent Set

Independent Set: Input s = (G, k). Is there an 
independent set S of size at least k?

Certificate: t ⊆ V (the candidate independent set)

Certifier: C(s, t): check if t is an independent set 
of size at least k
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Example
Circuit that outputs true iff graph G has an 
independent set of size 2.
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G = (V, E), n = 3



Some NP-Complete Problems
Thousands of known NP-Complete problems. Genres:

Packing: SET-PACKING, INDEPENDENT SET.
Covering: SET-COVER, VERTEX-COVER.
Constraint satisfaction:  SAT, 3-SAT.
Sequencing: HAMILTONIAN-CYCLE, TSP.
Partitioning: 3D-MATCHING 3-COLOR.
Numerical: SUBSET-SUM, KNAPSACK.

In practice. Most NP problems are either known to be in P 
or NP-complete.

Notable exceptions. Factoring, graph isomorphism



Impact of NP-Completeness

Prime intellectual export of CS to other disciplines

You should know about this if you are a chemist, physicist, 
mathematician….



Copyright © 1990, Matt Groening



Text


