
Computation
Intractability II

Review: Mystery Problems

Huge class of natural and interesting problems for which
we don’t know any polynomial time algorithm
we can’t prove that none exists

Examples: Steiner Tree, Knapsack, Traveling Salesman,
Vertex Cover, Independent Set, Facility Design, etc.

NP-completeness

EXP

NP

P

NP-complete
NP-complete: class of problems

that are “as hard” as every other
problem in NP

A polynomial-time algorithm for any NP-complete
problem implies one for every problem in NP

Today: explore NP-completeness and its implications

P != NP?

EXP

NP
P

EXP

P = NP

Two possibilities (we don’t know which is true, but
we think P != NP)

$1M prize if you can figure out the answer
(one of Clay institute’s seven Millennium Problems)

NP-complete

Plan

Polynomial Time Reductions

Define NP

Explore NP-completeness

Polynomial-Time Reduction

Y ≤ P X → can solve Y in polynomial-time using polynomial-
time algorithm for X as a black box (if one exists!)

Statement about relative hardness:

If Y ≤ P X and X ∈ P, then Y ∈ P

If Y ≤ P X and Y ∉ P, then X ∉ P

Basic Reduction Strategies

Reduction by simple equivalence.

Reduction from special case to general case.

Reduction by encoding with gadgets.

Set Cover
SET COVER: Given a set U of elements, a collection S1,
S2, . . . , Sm of subsets of U, and an integer k, does there exist
a collection of ≤ k of these sets whose union is equal to U?

S1 = {A, H}
S2 = {G, SH}

S3 = {A, H, SH}

S4 = {P}
S5 = {G, H, SH}

U = {A, G, H, P, SH}

k = 3 → yes
k = 2 → no

Example.

Vertex Cover
VERTEX COVER: Given a graph G = (V, E) and an integer k,
is there a subset of vertices S ⊆ V such that |S| ≤ k, and for
each edge, at least one of its endpoints is in S?

Basic Reduction Strategies

Reduction by simple equivalence.

Reduction from special case to general case.

Reduction by encoding with gadgets.

Term:! A Boolean variable or its negation.
 xi OR x͞i

Clause:!A disjunction (“or”) of terms.
 Cj = x1 ⋁ x2 ⋁ x3

Formula Φ: A conjunction (“and”) of clauses
 C1 ⋀ C2 ⋀ C3 ⋀ C4

SAT: Given a formula, is there a truth assignment that satisfies all
clauses? (i.e. all clauses evaluate to “true”).
Example on board.

3-SAT: special case where each clause has exactly 3 terms

Satisfiability Important!

3-SAT is Reducible to
Independent Set

Claim. 3-SAT ≤P INDEPENDENT-SET.

Proof. Given an instance Φ of 3-SAT, we construct an instance (G, k)
of INDEPENDENT-SET that has an independent set of size k iff Φ is
satisfiable.

Do reduction on board

3-SAT

INDEPENDENT
SET

VERTEX COVER

Reductions, Pictorially

SET COVER

Y X means Y ≤ P X

Partial map of problems we can use to
solve other ones in polynomial time by
transitivity of reductions:

If Y ≤ P X and X ≤ P W, then Y ≤ P W.

Proof idea: Compose the two algorithms.

Toward an (Informal)
Definition of NP

EXP

NP
P

What is special about the mystery problems?

First: Let’s Just Focus on
Decision Problems, OK?

Decision problem. Does there exist a vertex cover of size ≤ k?

Search problem. Find vertex cover of minimum size.

Self-reducibility. Search problem ≤ P decision version.
Applies to all (NP-complete) problems in this chapter.
Justifies our focus on decision problems.

P and NP

P. Decision problems for which there is a polynomial
time algorithm

NP. Decision problems for which there is a polynomial
time certifier

Let’s see some examples...

Solving vs. Certifying
E.g., Independent Set

Solve => Find an independent set of size k for a graph G
 S = FindIndeptSet (G, k)

Certify => Check whether S is an independent set of size k
 isIndept = CertifyIndeptSet (G, k, S)

No known polynomial time solution to solve independent set
Easy to certify a solution in polynomial time

Example: Non-Prime
COMPOSITES. Given an integer s, is s non-prime?

Solution or “certificate”. A nontrivial factor t of s. Note that
such a certificate exists iff s is non-prime.

Certifier(s, t):
Return “true” if 1 ≤ t ≤ s, and
s/t is an integer

Instance:
s = 437,669.

Certificate:
 t = 541 or 809.

Example: 3-SAT

3-SAT. Given formula Φ, is there a satisfying assignment?

(x1 ⋁ x2 ⋁ x3) ⋀ (x1 ⋁ x2 ⋁ x3) ⋀ (x1 ⋁ x2 ⋁ x4) ⋀ (x1 ⋁ x3 ⋁ x4)

Certificate. An assignment of truth values to the n boolean
variables.

x1 = true, x2 = true, x3 = false, x4 = true

Certifier. check that each clause in Φ has at least one true
literal.

Example: Hamiltonian Cycle

HAM-CYCLE. Given an undirected graph G = (V, E), does
there exist a simple cycle C that visits every node?

Certificate. A permutation of the n nodes.

instance s
certificate t

Takeaway

INDEPENDENT-SET, NON-PRIME, 3-SAT, and
HAMILTONIAN-CYCLE are in NP

So are many more problems...

EXP

NP
P

P, NP

Claim. P ⊆ NP.

If we can solve the problem in polynomial time, we can
always certify a solution in polynomial time. (Easy to prove
formally given a slightly more formal definition of NP)

NP-Complete

NP-complete. A problem Y in NP with the property that for
every problem X in NP, X ≤ p Y.

WHAT?!

EXP

NP
P

NP-complete

NP-Completeness
CIRCUIT-SAT

VERTEX-
COVER

INDEPT-
SET

SET-
COVER

TRAVELING-
SALEMAN3-SAT …

Cook-Levin Theorem. In 1971, Cook and Levin independently
showed that particular problems were NP-Complete.

We’ll look at CIRCUIT-SAT as canonical NP-Complete problem

All of NP (note: this includes P too!)

Given a canonical NP-complete problem, others
follow by polynomial-time reductions.

NP-Completeness

CIRCUIT-SAT

3-SAT

DIR-HAM-
CYCLE

INDEPENDENT
SET

VERTEX COVER

GRAPH 3-
COLOR

HAM-CYCLE

TSP

SUBSET-
SUM

SCHEDULINGPLANAR 3-
COLOR

by Cook-Levin Theorem

SET COVER

NP-Complete = Intractable
(Probably)

If there is a polynomial-time algorithm for any NP-
complete problem, then P = NP. (We don’t think this
is true)

EXP

NP
P

EXP

P = NP
NP-complete

What To Know

If P != NP, there is no polynomial-time algorithm for Z

Y Z

How to prove problem Z is NP-complete:
(1) Show that Z is in NP
(2) Find an NP-complete problem Y and show that Y ≤ P Z

Overview of
Cook-Levin Theorem

∧

¬

∧ ∨

∧

∨

1 0 ? ? ?

output

inputshard-coded inputs

yes: 1 0 1

Circuit Satisfiability
CIRCUIT-SAT. Given a combinational circuit built out
of AND, OR, and NOT gates, is there a way to set the
circuit inputs so that the output is 1?

CIRCUIT-SAT is NP-Complete
Theorem. CIRCUIT-SAT is NP-complete.

Proof idea: encode certifier algorithm as circuit

For any problem in NP, the certifier C(s, t) is a
polynomial-time algorithm that outputs yes/no.

Encode C(s, t) as a circuit of polynomial size that hard-
codes the problem s, and is satisfiable iff there is a
certificate t causes C(s, t) to output “yes”.

The circuit can “guess” the certificate.

Example:
Independent Set

Independent Set: Input s = (G, k). Is there an
independent set S of size at least k?

Certificate: t ⊆ V (the candidate independent set)

Certifier: C(s, t): check if t is an independent set
of size at least k

∧ independent set of size >= 2?

uv

1
hard-coded inputs
(graph description)

uw

0

vw

1

∨

n inputs (nodes in
independent set)

?

v

?

∧

w

?

∧

∨

set of size >= 2?

u

∧

∨

∨

∧ ∧ ∧

both endpoints of some
edge have been chosen?

¬
independent set?

Example
Circuit that outputs true iff graph G has an
independent set of size 2.

u

v w

G = (V, E), n = 3

Some NP-Complete Problems
Thousands of known NP-Complete problems. Genres:

Packing: SET-PACKING, INDEPENDENT SET.
Covering: SET-COVER, VERTEX-COVER.
Constraint satisfaction: SAT, 3-SAT.
Sequencing: HAMILTONIAN-CYCLE, TSP.
Partitioning: 3D-MATCHING 3-COLOR.
Numerical: SUBSET-SUM, KNAPSACK.

In practice. Most NP problems are either known to be in P
or NP-complete.

Notable exceptions. Factoring, graph isomorphism

Impact of NP-Completeness

Prime intellectual export of CS to other disciplines

You should know about this if you are a chemist, physicist,
mathematician….

Copyright © 1990, Matt Groening

Text

